disambr is an R 📦 that provides a flexible framework for disambiguation of named entities. Currently this package implements the AEV algorithm (van den Akker et al., 2020) for Web of Science author disambiguation.

Usage

The idea of basic usage is simply piping the disambiguation procedures. Each procedure takes list of sets as input and returns list of sets either by adding a new set or modifying input list of sets.

data |> 
    disambr_set_on_same_paper() |> 
    disambr_set_similar_initials() |>
    disambr_set_similar_last_names()

Sequence (piped functions) of disambiguation procedures defines a disambiguation algorithm.

disambr_eva <- function(data) {
    data |>
        disambr_set_on_same_paper() |>
        disambr_set_similar_initials() |>
        disambr_set_similar_last_names()
}

Implementation

The EVA-algorithm: An open-source solution for the disambiguation of author names in Web of Science data Olmo R. van den Akker Sacha Epskamp Stanislav Vlasov

The creation of co-authorship networks is a valuable way to depict the social structure of scientific fields. However, these co-authorship networks often get distorted because of the problems of author name synonymy (the same author is split into two nodes because his name is spelled differently in different publications) and author name homonymy (different authors are compounded into one node because they share the same name). The practice of author name disambiguation (AND) tries to solve these problems by correctly identifying the authors of scientific articles.

Several algorithms have been put forward in the context of AND, but none of them are suitable for large datasets of the Web of Science database. Therefore, in an earlier part of this project we proposed a new unsupervised learning algorithm based on the most recent AND literature. This so-called AEV-algorithm involves two phases: a blocking phase, in which pairs of authors are selected that are sufficiently similar, and a disambiguation phase, in which similar author names are either split or combined into one node based on information retrieved from the Web of Science database. In the disambiguation phase, the algorithm uses information about co-authorship, e-mail addresses, institutional affiliations, cited references, and article keywords (van den Akker et al., 2020).

Installation

## Installs and loads disambr
devtools::install_github("stasvlasov/disambr")
library("disambr")

Sets attributes

All disambiguation procedures used in disambr package work with sets. A set is basically any R object that can represent mathematical sets (e.g., set of authors, set of companies) with special attributes that are used by disabmr functions to identify the kind of set it is working with or produced (e.g., a set of authors that are likely to be the same person or a set of companies that are definitely different companies, etc.).

The attributes that are currently used to define/describe sets as well as their values are listed below:

  • disambr_set_name
    • string name of the set
  • disambr_entity
    • either person, organization, publication
  • disambr_set_type
    • similar_entities, different_entities
  • disambr_set_coefficient
    • number between 0 and 1 indicating how strongly entities are similar or different from each other. It is used only for establishing order of sets processing (e.g., start with sets of least similar entities)
  • disambr_set_collection
    • single_set_table (first column assumed to store entity id or entity id is just row number if entity_id_reference attribute is set to self, see below),
    • list_of_sets_as_lists (each set is a list of entity ids),
    • dyads_table (first and second columns assumed to be ids for the pair of entities)
  • disambr_entity_id_reference
    • self, name of other set as in its set_name attribute
  • disambr_entity_id_reference_md5_sum
    • md5 cache sum of the object where entities ids are referring to ensure that we will get to correct data for entities in the set.
  • disambr_recipe
    • list of disambr procedures that were applied to produce given set(s)
    • if it is a named list then first item is procedure name and the rest are properties:
      • procedure
      • file_name
      • file_md5sum (to check file identity later)
      • file_header (to check for consistency between read files)

Overall design principles

  • To allow for modular design each disambiguation procedure should accept and return list of sets (e.g., same person sets, different person sets, other probability of being the same person sets)
  • List of sets from (chain of) various procedures will be then merged (using basis set algebra) according to the specific disambiguation algorithm to produce final list of sets.
  • Initial input should be in the form of a list of initial sets (the simplest input is one set with every person likely to be non unique, e.g., data.table of authors from Web of Science bibliography data).
  • When reading data the package should try to do as many sets as possible on a fly (cleaning and splitting initial data to different types of entities)
  • Try to implement lazy data loading and processing where possible

Naming convention

References

This research was supported (in part) by the Fetzer Franklin Fund of the John E. Fetzer Memorial Trust.

van den Akker, O. R., Epskamp, Sacha, & Vlasov, S. A. (2020). The AEV Algorithm—Author name disambiguation for large Web of Science datasets.

Web of Science Field Tags 2018-06-27

https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Core-Collection-List-of-field-tags-in-output?language=en_US

FN File Name
VR Version Number
PT Publication Type (J=Journal; B=Book; S=Series; P=Patent)
AU Authors
AF Author Full Name
BA Book Authors
BF Book Authors Full Name
CA Group Authors
GP Book Group Authors
BE Editors
TI Document Title
SO Publication Name
SE Book Series Title
BS Book Series Subtitle
LA Language
DT Document Type
CT Conference Title
CY Conference Date
CL Conference Location
SP Conference Sponsors
HO Conference Host
DE Author Keywords
ID Keywords Plus®
AB Abstract
C1 Author Address
RP Reprint Address
EM E-mail Address
RI ResearcherID Number
OI ORCID Identifier (Open Researcher and Contributor ID)
FU Funding Agency and Grant Number
FX Funding Text
CR Cited References
NR Cited Reference Count
TC Web of Science Core Collection Times Cited Count
Z9 Total Times Cited Count*
U1 Usage Count (Last 180 Days)
U2 Usage Count (Since 2013)
PU Publisher
PI Publisher City
PA Publisher Address
SN International Standard Serial Number (ISSN)
EI Electronic International Standard Serial Number (eISSN)
BN International Standard Book Number (ISBN)
J9 29-Character Source Abbreviation
JI ISO Source Abbreviation
PD Publication Date
PY Year Published
VL Volume
IS Issue
SI Special Issue
PN Part Number
SU Supplement
MA Meeting Abstract
BP Beginning Page
EP Ending Page
AR Article Number
DI Digital Object Identifier (DOI)
D2 Book Digital Object Identifier (DOI)
PG Page Count
P2 Chapter Count (Book Citation Index)
WC Web of Science Categories
SC Research Areas
GA Document Delivery Number
UT Accession Number
PM PubMed ID
ER End of Record
EF End of File

Existing tools for reading WoS data

name comments
bibliometrix reads only plaintext format into bibliometrixDB object
wosr Requires WoS API subscription
refsplitr package ‘refsplitr’ is not available (for R version 4.0.1)
read.wos.R Does not work…
metagear scrapebibliography by DOI
hindexcalculator ?

bibliometrix

https://github.com/massimoaria/bibliometrix

Site: https://bibliometrix.org/index.html

git clone https://github.com/massimoaria/bibliometrix
install.packages("bibliometrix")
library("bibliometrix")
library("magrittr")


bmdata <- convert2df(file = 'https://www.bibliometrix.org/datasets/wos_plaintext.txt', dbsource = 'wos', format = "plaintext")


bmdata %>% class
## [1] "data.frame"     "bibliometrixDB"

bmdata %>% names


bmdata <- convert2df(file = 'https://www.bibliometrix.org/datasets/wos_plaintext.txt', dbsource = 'wos', format = "csv")

metagear

CRAN docs: https://cran.r-project.org/web/packages/metagear/metagear.pdf

GitHub: https://github.com/cran/metagear/

git clone https://github.com/cran/metagear/
scrape_bibliography

refsplitr

git clone https://github.com/ropensci/refsplitr
install.packages("refsplitr")
library("refsplitr")

wosr

Requires premium WoS API - https://clarivate.com/webofsciencegroup/solutions/xml-and-apis

CRAN doc: https://cran.r-project.org/web/packages/wosr/wosr.pdf

Site: https://github.com/vt-arc/wosr

GitHub: https://github.com/vt-arc/wosr

git clone https://github.com/vt-arc/wosr
install.packages("wosr")
library(wosr)

## Get session ID
sid <- auth("s.vlasov@tilburguniversity.edu", password = "")
## Error: No matches returned for Username s.vlasov@tilburguniversity.edu

## Query WoS to see how many results match your query
query <- 'TS = ("animal welfare") AND PY = (2002-2003)'
query_wos(query, sid = sid)

## Download data
pull_wos(query, sid = sid)

read.wos.R

GitHub: https://github.com/alberto-martin/read.wos.R

git clone https://github.com/alberto-martin/read.wos.R
## load functions
## --------------------------------------------------------------------------------
source("../lib/read.wos.R/read.wos.functions.R")
## --------------------------------------------------------------------------------


## test

wos.data.mp <- read.wos(dir("../data/Journals in Mathematical Psychology", no.. = TRUE, full.names = TRUE))
## Error in substring(fields, 4) : invalid multibyte string at '<ff><fe>P'
## In addition: Warning message:
## In readLines(files[1], n = 1) : line 1 appears to contain an embedded nul

wos.data.mp <- read.wos("../data/Journals in Mathematical Psychology/Psychonomic Bulletin & Review 2.txt")
## Error in substring(fields, 4) : invalid multibyte string at '<ff><fe>P'
## In addition: Warning message:
## In readLines(files[1], n = 1) : line 1 appears to contain an embedded nul

wos.data <- read.wos("/mnt/md5/data/wos/wos-sci-expanded.firm-names-query.analytical-instruments/LN Public NAICS records from 10001 to 10500.txt")
## Error in substring(fields, 4) : invalid multibyte string at '<ff><fe>P'
## In addition: Warning message:
## In readLines(files[1], n = 1) : line 1 appears to contain an embedded nul